

By definition:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \qquad \text{OR}$$

Alternate Definition for Tangent Line at a point (a, f(a)

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

)

Vocabulary quirks:

- ✓ Slope of the Secant Line → Traditional Slope $m = \frac{y_2 y_1}{x_2 x_1}$ (Average Rate of Change)
- ✓ Slope of the Tangent Line →Use Derivative f'(x) = ? (Instantaneous Rate of Change)
- ✓ Horizontal Tangent Line means "the slope equals 0!"

Algebraic Rules

- ✓ Power Rule $f(x) = x^{n} \quad \Rightarrow \quad f'(x) = c \cdot nx^{n-1}$ ✓ Product Rule $(f \cdot g)'(x) = f(x) \cdot g'(x) + f'(x) \cdot g(x)$ ✓ Quotient Rule $\left(\frac{f}{g}\right)'(x) = \frac{g(x) \cdot f'(x) f(x) \cdot g'(x)}{[g(x)]^{2}}, \quad g(x) \neq 0$ ✓ Chain Rule $fog(x) = f(g(x)) \quad \Rightarrow \quad fog'(x) = f'(g(x)) \cdot g'(x)$
- ✓ Implicit Derivatives Required to find $\frac{dy}{dx} = ?$ when x,y are on the same side of the equation and cannot be separated.

Trigonometric Rules

- ✓ Basic Trig Derivatives
- ✓ Chain Rule
 - -Raised to a Power Ex: $y = \cos^4 x$ \rightarrow $y' = -4\cos^3 x \sin x$ -Unusual Angle Ex: $y = \sin(3x)$ \rightarrow $y' = 3\cos(3x)$ -Combination Ex: $y = \tan^3(2x^2)$ \rightarrow $y' = 12x\tan^2(2x^2)\sec^2(2x)$

✓ Inverse Trig
$$y = Sin^{-1}x$$
 → $y' = \frac{1}{\sqrt{1-x^2}}$
 $y = Tan^{-1}x$ → $y' = \frac{1}{1+x^2}$

Exponential and Logarithmic Rules ✓ Exponential

$$y = [a^{f(x)}] \rightarrow y' = a^{f(x)} \ln a \bullet f'(x)$$

$$y = [e^{f(x)}] \rightarrow y' = e^{f(x)} \bullet f'(x)$$

✓ Logarithmic

$$y = \log_a f(x) \quad \Rightarrow \quad y' = \frac{f'(x)}{f(x) \ln a}$$

$$y = \ln f(x)$$
 \rightarrow $y' = \frac{f'(x)}{f(x)}$

Higher Order Derivatives

Derivative	f' Notation	y' · Notation	D Notation	Leibniz Notation
First	f'(x)	у′	D _x y	$\frac{dy}{dx}$
Second	f''(x)	y"	$D_x^2 y$	$\frac{d^2y}{dx^2}$
Third	f'''(x)	у ^т	$D_x^3 y$	$\frac{d^3y}{dx^3}$
Fourth	$f^{(4)}(x)$	y ⁽⁴⁾	$D_x^4 y$	$\frac{d^4y}{dx^4}$
Fifth	$f^{(5)}(x)$	y ⁽⁵⁾	$D_{x}^{5}y$	$\frac{d^5y}{dx^5}$
Sixth	$f^{(6)}(x)$	y ⁽⁶⁾	$D_x^6 y$	$\frac{d^6 y}{dx^6}$
:			:	÷
nth	$f^{(n)}(x)^{-}$	y ^(m)	$D_x^n y$	$\frac{d^n y}{dx^n}$